Analytical solutions forfuzzysystem using power series approach
نویسندگان
چکیده
منابع مشابه
Approximate Analytical Solutions of Time Fractional Whitham-Broer-Kaup Equations by a Residual Power Series Method
In this paper, a new analytic iterative technique, called the residual power series method (RPSM), is applied to time fractional Whitham–Broer–Kaup equations. The explicit approximate traveling solutions are obtained by using this method. The efficiency and accuracy of the present method is demonstrated by two aspects. One is analyzing the approximate solutions graphically. The other is compari...
متن کاملPower and Exponential-power Series Solutions of Evolution Equations
1.1. Brief overview. The theory of partial differential equations when one, or more variables, is in the complex domain, and approaches a characteristic variety has only recently started to develop. In their paper [11], generalized in [12], O. Costin and S. Tanveer proved existence and uniqueness of solutions with given initial conditions, for quasilinear systems of evolution equations in a lar...
متن کاملOn Several Inequalities Deduced Using a Power Series Approach
The aim of this paper is to study what would become several inequalities using the power series method. Also some applications will be presented. Mathematics Subject Classification: 26D15
متن کاملDirichlet series and approximate analytical solutions of MHD flow over a linearly stretching sheet
The paper presents the semi-numerical solution for the magnetohydrodynamic (MHD) viscous flow due to a stretching sheet caused by boundary layer of an incompressible viscous flow. The governing partial differential equations of momentum equations are reduced into a nonlinear ordinary differential equation (NODE) by using a classical similarity transformation along with appropriate boundary cond...
متن کاملAnalytical properties of power series on Levi-Civita fields
A detailed study of power series on the Levi-Civita fields is presented. After reviewing two types of convergence on those fields, including convergence criteria for power series, we study some analytical properties of power series. We show that within their domain of convergence, power series are infinitely often differentiable and reexpandable around any point within the radius of convergence...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: JOURNAL OF ADVANCES IN MATHEMATICS
سال: 2016
ISSN: 2347-1921
DOI: 10.24297/jam.v12i8.5973